Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments.
نویسندگان
چکیده
Titanium dioxide (TiO(2)) nanostructures were synthesized by microwave-assisted and conventionally heated hydrothermal treatment of TiO(2) powder. The tubular structures were converted to a rodlike shape by sintering the samples at various temperatures in air for 3 h. This was accompanied by phase transformation largely influenced by the method of synthesis and the mode of heating. The X-ray diffraction results are in agreement with the structural transformation indicating the gradual changes in the phase and crystallinity of the as prepared samples. The tubular structure is found to collapse at high temperature. UV-vis-IR spectroscopic results suggest that nanorods tend to absorb photons of higher energy (λ = 280 nm) than nanotubes (λ = 300 nm) but emit photons with lower energy than nanotubes. It was found that the nanotubes have a sharper photoluminance emission line at 340 nm that is absent in the nanorods. We also found that nanotubes have higher efficiency, lower threshold sensing temperature, longer response time, and shorter recovery time for hydrogen gas sensing than nanorods.
منابع مشابه
The study of humidity effect on carbon dioxide gas sensing properties of zinc oxide nanowires assisted by polyvinyl alcohol network at room temperature
In this research, Zinc oxide (ZnO) nanostructures were synthesized by low cost hydrothermal method. The grown ZnO nanostructures had a dispersed distribution with nanowire morphology and the specific surface area of about 7 m2.gr-1 which they have crystalized in hexagonal wurtzite structure. ZnO nanowires/polyvinyl alcohol network (ZP) on the epoxy glass substrate with cu-interdigited electrods...
متن کاملZinc oxide nano-crystals assisted for carbon dioxide gas sensing; prepared by solvothermal and sonochemical methods
ZnO nanostructures of different methods and sizes were grown in a controlled manner using a simple hydrothermal and sonochemical technique. Controlling the content of concentration and temperature of the reaction mixture, spherical nanoparticles ZnO structures could be synthesized at temperatures 100-150 °C with excellent reproducibility in solvothermal and at different power and time in sonoch...
متن کاملInvestigating the effects of post-heat treatment temperatures on the structure of prepared nanorod by hydrothermal method
In this study, the TiO2 nanorods were synthesized from P25 TiO2 nanoparticles by hydrothermal method in 10 M NaOH solution. The effects of annealing temperatures on produced nanorods were investigated by scanning electron microscopy (SEM) X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. Diameter growth...
متن کاملCuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors
Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different work...
متن کاملW-doped nanoporous TiO2 for high performances sensing material toward acetone gas
W-doped TiO2 with nanoporous structure was synthesized by a one-step low temperature hydrothermal method using TiOSO4 and (NH4)6H2W12O40•xH2O as titanium and tungsten sources. Structure, morphology, specific surface area and chemical state of samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). W-doped nanoporo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS applied materials & interfaces
دوره 4 3 شماره
صفحات -
تاریخ انتشار 2012